

Outline

- Brief Background: (1) Area
 Coverage, (2) Random Walks
 and (3) Swarm Intelligence
- Part I Ants: Diffusion,
 Evaporation, Noise
- Part II Albatrosses: Levy Flight
- Summary, Open Research
 Questions, Current Work

"Two roads diverged in a wood... and the ant stochastically chose the one most traveled."

Background

Area Coverage

Moving physically through an environment and gathering information or modifying area

- Planetary Exploration
- Land-mine Demining
- Locating Mineral Deposits
- Fighting Wildfires
- Mitigating Harmful Algae Blooms

Photos from top to bottom:

- 1. NASA JPL's Mar's Curiosity Rover
- 2. Mike Heinrich
- 3. NOAA MODIS Satellite Imagery

Background

Random Walks

Random walks are paths consisting of a series of random segments.

- Observed in nature and used as basis to model broad spectrum of phenomena (markets, epidemics, foraging)
- Can be truly random, or biased (show some preference for a certain direction)

Random walk starting at (0,0) and moving at 1 unit/s in 1 unit increments for 1000 seconds

Background

Swarm Intelligence

Ant behavior is a biased random walk

From many, <u>local interactions</u>, a <u>system-level</u> behavior emerges.

- Many examples in nature
 - Ants in particular use *chemotaxis* to forage for food
 - More likely to move toward a higher pheromone concentration (positive chemotaxis)
- Swarms are scalable, robust, and require less sophistication (than traditional centralized control)

Diffusion, Evaporation, Noise

Area Coverage + Biased Random Walk + Swarm Intelligence

- Agents use virtual pheromone to indicate areas that have already been visited
- Agents are more likely to move in direction of lower pheromone concentration (negative chemotaxis)
- Diffusion and evaporation influence distribution of pheromone
 - Diffusion allows information to be disseminated
 - Evaporation allows old information to be forgotten
- How much diffusion, evaporation is ideal?
- How much noise is ideal?
- What type of random walk is best?

Diffusion, Evaporation, Noise

Diffusion / Evaporation Visualization

Diffusion

Evaporation

Diffusion, Evaporation, Noise

Ant-Inspired Control Law

Select Literature Review

- Kuiper [2006] used pheromone to drive area coverage but did not use evaporation or diffusion and agents allowed only to move in discrete grid
- Sauter [2005] and Gaudiano [2003] used diffusion and evaporation, but did not investigate effect of either on performance
- Ramakrishnan [2010] studied effect of noise, but for ant foraging model (not area coverage)

Research Gaps:

- No research into the relative influence of pheromone environmental mechanisms on area coverage performance
 - Diffusion
 - Evaporation
- No research into the role played by **noise** on area coverage performance
- No research into crossinteractions between factors
- [1] Kuiper and Nadim-Tehrani, "Mobility Models for UAV Group Reconnaissance Applications", 2006.
- [2] Sauter et al. "Performance of Digital Pheromones for Swarming Vehicle Control", 2005.
- [3] Gaudiano et al, "Swarm Intelligence: A New C2 Paradigm with an Application to Control Swarms of UAVs", 2003.
- [4] Ramakrishnan Kumar, "Synthesis and Analysis of Control Laws for Swarm of Mobile Robots Emulating Ant Foraging Behavior" 2010.

Formulation Steps

- A) Keller Segel Minimal Model (continuous form)
- B) Langevin Equation

Simplifying Assumptions

- Linear Evaporation
- No Agent Growth/Death
- Pheromone produced at constant rate
- Pheromone diffuses passively over field

Agents
Diffusion Attraction/Repulsion
$$\frac{\partial a(r,t)}{\partial t} = \nabla \cdot \left(D_a \nabla a(r,t) - \chi a(r,t) \nabla b(r,t) \right)$$
Pheromone
Distribution
$$\frac{\partial b(r,t)}{\partial t} = \nabla \cdot D_b \nabla b(r,t) + g(a(r,t)) - \gamma(b(r,t))$$
Diffusion Evaporation
Deposition

*Critical parameters being studied in red

Formulation Steps

- A) Keller Segel Minimal Model
- B) Langevin Equation (discrete form)

Agents Velocity

$$\dot{R}_a = \chi \nabla b(r,t) \Big|_{R_a} + \sigma dW$$

Gradient Noise Following

Relate continuum and discrete description

$$a(r,t) = \sum_{i=1}^{A} \delta(r - R_i(t))$$

Simplifying Assumptions

 Assume simple kinematic model with inertial effects neglected

*Critical parameters being studied in red

Implementation Details

- ■100 x 100 search area
- Agent velocity set to maximum of 1 unit/s
- Pheromone deposited at constant 1 unit/s
- Simulations run for 3000 s

- ■10 agents initialized in random positions
- •All results are averaged over 25 runs
- Agents move with constant path length of one

Percent Area Coverage Integral*

- *Also used two other metrics:
- 1) Visitation entropy
- 2) Pop-up Threat Detection

Measure of:

Exhaustivity
Rate of Coverage

$$P_1 = \int_0^{t_{final}} m(t)dt$$

$$m(t) = \int_{R} visited(r, t)dR$$

$$\begin{cases} visited(r, t) = 1 & if \ visited \ once \\ visited(r, t) = 0 & if \ never \ visited \end{cases}$$

Then discretized for visitation grid

Part I:Results

Broad Overview: Diffusion + Evaporation

Three Parameters:

- **1. Noise Values** [0.01, 0.05, 0.1, 0.2, 0.3, 0.4]
- **2. Diffusion Values** [1E-2,1E-3,1E-4,1E-5,1E-6]
- **3. Evaporation Values:** [1E-1,1E-2,1E-3,1E-4,1E-5]

Three Cases:

- Diffusion Only
 (35 Combinations)
- **2. Evaporation Only** (35 Combinations)
- 3. Diffusion + Evaporation (175 Combinations)

Part I:Results

Diffusion Only (Case 1) and Diffusion + Evaporation

- Peak performance with noise of 0.05 or 0.1
- Peak performance with moderate diffusion
- Diffusion only case is much better with higher noise
- Sensitivity to evaporation highly dependent on noise

Part I:Discussion

Part I:Discussion

Important Outcomes: Evaporation and Noise

Evaporation*

- Any amount of evaporation makes it more likely to revisit a previously visited area
- Depends on application and how performance is measured if this is desired

Noise

- With little noise, it is difficult to pass through an area that's been covered to an area that hopefully needs covered*
- With a lot of noise, local information is ignored and behavior devolves to random wandering

*In some situations, evaporation can also facilitate passing through an area that's been covered __

Part II: Levy Flight Background

What is Levy Flight?

- Type of random walk that uses **variable** length path segments
 - Pulled from 'heavy-tailed' distribution
- Used to model some foraging behavior observed in nature when resources are scarce (Levy foraging hypothesis)
 - Albatrosses [Viswanathan 1996], Sharks, Bony Fishes, Sea Turtles, Penguins [Sims 2008], Human Hunter gatherers [Raichlen 2013], Fossil Trails [Sims 2014]
- Alpha parameter-range [1 3] changes shape of distribution

$$F^{-1}(u) = x_{\min}(1-u)^{-1/lpha}$$

Cumulative Dist. Function Pure Power Law

Part II: Levy Flight Background

Single Agent initialized at (0,0) after 1000s

Shows Motivation for using Levy Flight for area coverage

100 Agents initialized at (0,0) after 1000s

Part II: Levy Flight Background

Incorporating Levy Flight

Literature Review

- Sutantyo [2010] Showed that Levy Flight was more effective at search, but gains decreased as agents increased
- Nurzaman [2010] Compared Levy Flight to gradient following and found hybrid algorithm performed best for search

Research Gaps:

- 1) Levy flight has never been applied to **area coverage** in robotics.
- 2) It is also unknown how the **alpha parameter**, which controls the shape of the 'heavy-tailed' distribution will impact area coverage performance.

[1] D. K. Sutantyo, S. Kernbach, V. A. Nepomnyashchikh, and P. Levi, "Multi-Robot Searching Algorithm using Levy Flight and Artificial Potential Field", 2010.

[2] S. G. Nurzaman, Y. Matsumoto, Y. Nakamura, S. Koizumi, and H. Ishiguro, "Biologically Inspired Adaptive Mobile Robot Search With and Without Gradient Sensing", 2010

Part II: Case Introduction

Three Cases:

- Gradient Following with <u>Constant</u> Path Length (From Part I)
- 2. Gradient Following with *Variable* Path Length (New)
- 3. Pure Levy Flight (New)

Part II: Results

Three Cases:

- 1. Gradient Following with constant path length (From Part I)
- 2. Gradient Following with variable path length (New)
- 3. Pure Levy Flight (New)

Notes:

- Alpha varied from one to three in increments of 0.5
- Used best performing values for noise (0.05), evaporation (1E-4), and diffusion (1E-4) from Part I

Single Instance of Each Case

Part II: Results

Three Cases:

- 1. Gradient Following with constant path length (From Part I)
- 2. Gradient Following with variable path length*
 (New)
- 3. Pure Levy Flight* (New)

^{*}Dashed Line indicates no evaporation

- Alpha varied from one to three in increments of 0.5
- Also investigated effect of using with and without evaporation
- Used best performing values for noise (0.05), evaporation (1E-4), and diffusion (1E-4) from Part I

Alpha Parameter (Levy Distribution)

- Gradient Following with Levy performed the best (slightly influenced by alpha)
- Levy only performance very strongly related to alpha

Part II: Discussion

Important Outcomes

- Gradient following with Levy performed best for area coverage integral and detecting both types of pop-up threats
 - Viewing a typical mature pheromone field helps show how more pop-up threats are detected

Wrapup / Open Research Questions

Bio-Inspired Principles applied to area coverage scenarios:

- Swarm Intelligence (Social Insects)
- Pheromone-based Communication (Ants)
- Levy Flight (Albatrosses, Marine Predators...)

How can we objectively measure area coverage performance of *biological* systems?

How can we use pheromone-inspired communication to produce more complex behaviors like real ant colonies do?

- Multiple pheromones (varying diffusion and evaporation)
- Multiple behavior modes (foraging, defense, colony migration)

Current Work (Harmful Algal Blooms)

Extending Bio-Inspired Principles to combat a biological problem

Questions

